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LE"ER TO THE EDITOR 

The undulation mode of freely suspended liquid films 

Harald Pleiner and Helmut R Brand 
FE4 Physik, Univmitat Essen, D 43W Essen 1, Federal Republic of Germany 

Received 12 September 1991, in hnal form 14 October 1991 

Abstract We argue that for real, h l y  suspended liquid hlms the undulation mode 
(uansverse sound mode) has a linear dispersion relation of the usual sound-like s t ~ c t n r e ,  
i.e. a damping conuibution proportional to the wavevector squared (kz). Thus, here 
is no need to introduce non-linear fluctuation effects, which would be necessary if the 
regular damping mechanism (- kz) were absent, and which would lead to singular 
contributions in lhe damping. 

In recent years there has been growing interest in the physical properties of liquid 
films. They are studied because of their special material properties, because of the 
novel structures and phases they can form, or in order to investigate the influence 
of dimensionality on the fundamental behaviour of liquids. Very widespread are thin 
(at least bilayer) smectic liquid crystal films, bilayer membranes of amphiphiles in 
lyotropic systems, monolayer interfaces in micellar systems, Langmuir-Blodgett films 
on a liquid or solid support [I], or soap films [2]. 

Here we discuss the transverse dynamics (undulation mode or transverse sound 
mode) of those real, liquid films in the hydrodynamic limit. In contrast to two recent 
publications we argue that there are internal dissipative processes within the liquid 
films, which provide the usual sound-like damping (Im w - kz) of the undulation 
mode with frequency w and wavevector k, even in the absence of any surrounding 
medium. If there were no damping - IC2 present, the non-linearities in the hydrody- 
namic equations would provide the coupling to (or scattering at) thermal fluctuations 
giving rise to an anomalous, renormalized dispersion relation (Im w - IC3 [3] or - k4w-'I3 [4]). However, the presence of the ordinaly damping mechanism in real 
films makes it very unlikely that such damping processes due to non-linear fluctuations 
are of any importance. 

On the other hand, for mathematical, i.e. ideally two-dimensional surfaces, the 
arguments in [3] and [4] apply and there is no damping of the order kz. But 
in addition, there is no sound-like propagation (Re w - IC) in such mathematical 
surfaces due to the lack of surface tension. In the next section we argue in detail, 
why in real liquid films the undulation mode has the ordinary sound-like dispersion 
relation. 

Apart from the usual hydrodynamic variables (density p, momentum density pv 
and energy density E) necessary to describe a simple fluid, a Elm is additionally 
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characterized by a displacement variable U describing the non-equilibrium position 
of the am. In equilibrium U 3 0 and the film is assumed to be flat (e.g. given 
by z = constant) and to have thickness do. In the incompressible limit the trans- 
verse momentum conservation is then expressed by the linearized equation (gravity 
neglected) 

where the subscript I denotes components transverse to the film. Since we are dealing 
with thin films, any dependence on the position across the film can be neglected; 
for the same reason one displacement field U is sufficient for the description In 
equation (1) VL@ = (6/6u,) E dV, with e the elastic free energy density, describes 
the elastic response of the film to shear flow. Shearing the film, however, also 
means stretching and compressing the film (figure I), thus increasing the surface 
and decreasing the thickness. In this non-equilibrium state an elastic restoring force 
occurs due to compressional elasticity (in smectic systems), due to culvature elasticity 
(in smectic films and amphiphilic membranes), and due to surface tension (in any 
liquid film). Since compression due to shear is a secondaly effect, i.e. the change 
in thickness is quadratic (- [V,u,]*), the appropriate compressional elastic energy 
is then quartic in the shear and does not give rise to an elastic restoring force in a 
linearized theory [SI. On the other hand the change in surface energy due to shear is 
proportional to the change of surface area [6] (ie. quadratic in the shear) thus giving 
rise to a linear elastic force V,@* = 7 V:u,, where yd,  is the surface tension. In 
addition, bending gives a linear restoring force V,@, = - K A i u z ,  where K is 
the splay elastic constant IC, in smectic systems [7] or the bending coefficient n in 
amphiphilic bilayers [SI. 

x 

Flgurc 1. Crms section ot a bilayer smectic film 
after constant shearing (V= uz = constant) showing 
stretching (length 1 = leg/ cos Q) and compression 
(thickness d = d e q c o s 8 )  with tan@ = V = u z ,  
where subscripts eq refer to equilibrium quantities. 

Figure 2. Crm section of a bilayer smectic film 
after a conslant mlation leading to an equilibrium 
state. 

The viscous contribution (v2) in equation (1) describes dissipative processes within 
the film during shearing. It has been argued in [3] and [4] that those dissipative pro- 
cesses have to be absent, because for films, shearing and rotating would be equivalent 
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processes. Obviously, this is not true for real films. Figure 2 shows the film after 
a constant rotation in a perfect equilibrium state, where no elastic or dissipative 
restoring forces arise. The state obtained after shearing (figure I), however, is a 
non-equilibrium state and dissipation occurs during the relaxation into any equilib- 
rium state. Thus, shearing and rotation of a real film lead to fundamentally different 
states. This holds for smectic systems as well as for soap films and amphiphilic mem- 
branes. As usual the shear Viscosity can be attributed to relative motions of the 
molecules on the molecular length scale and is an intrinsic and unavoidable property 
of any real liquid film. It is not related to changes of the surface area or of the film 
thickness, but is proportional to the shear flow. 

For liquid films the (diffusional) motion within the film is decoupled from the 
transverse film motion and need not be considered here. Then equation (1) is 
sufficient to describe momentum conservation and reads (@ = + @,J 

pGa--yALuz + KA~u,=uzA,v,. (2) 

In smectic systems there is an additional dissipative process, permeation, the diffusion 
of molecules across the layers 191. It is related to the deformation of the layers. A 
similar process occurs in soap films, where soap molecules dissolved in the water 
layer diffuse to the amphiphilic monolayers (or vice versa), if the film is distorted 
(Gibbs diffusion [lo]). As discussed above, layer compression is a quadratic effect 
and thus only bending can lead to permeation or Gibbs diffusion in the linear regime. 
Since we have already considered a dissipative process (shear diffusion), which is of 
lower order in the gradients, and since we are dealing with thin films, we will neglect 
permeation and Gibbs musion due to bending. Then we are left with the simple 
kinematic relation between the transverse film velocity and the displacement 

uz = vz. (3) 

Equations (2) and (3) lead in the long wavelength limit to a transverse (undulation) 
mode of the usual sound-like dispersion relation 

Of course, any friction between the film and the surrounding medium (air, water etc) 
gives rise to additional damping contrihuhons of up to order kf. The considerations 
presented here apply not only to isotropic films but equally well to anisotropic ones, 
e.g. films of tilted smectics. In this case there are more elastic and viscous coefficients 
involved. 

Thus non-linear fluctuation effects are not Q prion necessaly to be considered for 
real films, only in the special case that u2 is extraordinarily small. 

For mathematical Wps, which are infinitesimally thin (and thus also of laterally 
inlinite extent in order to have a non-vanishing total mass), there is no compression 
and no stretching during shear and thus no compressional elasticity and no surface 
tension (y e 0). But such a system can have curvature elasticity (I< # 0). 

Since shearing and rotating are identical operations Cor mathematical films, it is 
clear that shear viscosity cannot o a r  as a dissipative process, because (homogeneous) 
rotations must not lead to any entropy production (a homogeneously rotated system 
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is still in an equilibrium state). Thus, v2 E 0 and in the momentum consenation 
equation only inhomogeneous shear diffusion is allowed-a process also present in 
physical systems, but usually neglected against ordinary shear viscosity. Therefore, in 
the case of mathematical films equation (2) is replaced by 

pG, + K A ~ u ~  = -C2Afvz. (5) 

This leads together with equation (3) to the dispersion relation 

i n: 4- - - IC, 
2 P  

w = f (5) 
which is not a sound-like excitation. Thus, in the limit of vanishing film thickness the 
sound-like behaviour (4) is replaced by (6). Whether one can reach this transition 
in a real system and, if so, at what thickness, depends on the specific nature of the 
film considered (soap, membrane, smectic etc), since the thickness dependence of the 
relevant parameters (7, IC, vz, E 2 )  is not universal. In addition, such a transition 
also depends on the wavelength of the excitation considered and could be expected 
for e.g. k, = (y/If)l/z or k, 2: (v2/c2)’/2. 

Support by the Deutsche Forschungsgemeinschaft is gratefully acknowledged. 
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